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Abstract

Coupled hydrogeophysical methods infer hydrological and petrophysical parameters
directly from geophysical measurements. Widespread methods do not explicitly rec-
ognize uncertainty in parameter estimates. Therefore, we apply a sequential Bayesian
framework that provides updates of state, parameters and their uncertainty whenever5

measurements become available. We have coupled a hydrological and an electrical
resistivity tomography (ERT) forward code in a particle filtering framework. First, we
analyze a synthetic data set of lysimeter infiltration monitored with ERT. In a second
step, we apply the approach to field data measured during an infiltration event on a
full-scale dike model. For the synthetic data, the water content distribution and the10

hydraulic conductivity are accurately estimated after a few time steps. For the field
data, hydraulic parameters are successfully estimated from water content measure-
ments made with spatial time domain reflectometry and ERT, and the development of
their posterior distributions is shown.

1 Introduction15

In recent years, the worth of geophysical methods in hydrological applications has in-
creasingly become apparent (e.g. Hubbard et al., 1999; Rubin and Hubbard, 2009;
Linde et al., 2006; Vereecken et al., 2006). Typically, hydrological investigations rely on
methods that disturb the soil, like soil coring, tensiometry or Time Domain Reflectom-
etry (TDR). In contrast to that, non-invasive geophysical measurements provide the20

possibility to eavesdrop on subsurface flow and transport processes without disturb-
ing them. This way, spatio-temporal patterns of hydrological states can be retrieved.
In hydrogeophysical applications, hydrological states and parameters are estimated
through observations of geophysical states (e.g. electrical resistivity). The possibly
unknown parameters encompass both hydrological parameters determining flow and25

transport and petrophysical parameters that relate geophysical and hydrological state
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variables.
Geophysical surveys conducted to estimate subsurface states or parameters have

been approached in a three-step manner (see e.g. Binley et al., 2002; Kemna et al.,
2002; Chen et al., 2004; Cassiani and Binley, 2005; Koestel et al., 2008; Müller et al.,
2009). First, a geophysical survey retrieves the geophysical state variables of the sub-5

surface (e.g. the electrical resistivity distribution). Next, a petrophysical relationship is
applied to transfer these into hydrological state variables (e.g. water content or tracer
concentration). Finally, these state variables are used to drive a hydrological model or
they are used in a parameter estimation process.

The numerical inversion methods to obtain the geophysical state variables from the10

survey data have to solve a highly nonlinear and mixed-determined problem. Typi-
cally, the resolution of the inversion result differs spatially, so that some regions may be
well resolved while others are prone to exhibit interpretation errors (Day-Lewis et al.,
2005). Furthermore, available knowledge about factors driving hydrologic processes
(e.g. amount of infiltration or precipitation) does not enter into this conversion although15

it largely influences the observations. Rings and Hauck (2009) have studied the vary-
ing resolution for surface-based Electrical Resistivity Tomography (ERT). They found
that unresolved contrasts and inversion artefacts may lead to quantification errors that
would produce unphysical hydrological properties. Consequently, an improved inver-
sion paradigm has become necessary.20

Integrated or coupled inversion approaches aim at inferring hydrological properties
directly from the geophysical measurements. The parameters of the hydrological model
and of the local-scale petrophysical relationship between geophysical and hydrologi-
cal states are perturbed to minimize the difference between modelled and measured
data. Several authors have investigated coupled hydrogeophysical inversion for hy-25

drological modelling (Kowalsky et al., 2004; Lambot et al., 2006; Jadoon et al., 2008;
Hinnell et al., 2009; Rucker, 2009). These contributions used synthetic data to eval-
uate the usefulness and applicability of coupled inversion for simplified hydrological
systems. Additionally, newer studies are increasingly applying these methods to ac-
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tual field data, where the structural inadequacies of the models, measurement errors
and the assumptions inherent to the petrophysical relationship complicate the inversion
problem (Kowalsky et al., 2005; Deiana et al., 2008; Looms et al., 2008). In a recent
contribution, Huisman et al. (2009) have formulated the coupled inversion problem in
a Bayesian framework to explicitly recognize uncertainty. They argued that the poste-5

rior uncertainty of the model parameters and predictions is useful to explore the value
of different measurement types.

The coupled hydrogeophysical approach is especially suited for problems where hy-
drological states are observed by geophysical measurements on several occasions
(i.e. time-lapse geophysical surveys). When time-lapse geophysical measurements10

are used to monitor hydrological processes and to parameterize hydrological models,
an inevitable question is whether additional measurements still provide additional infor-
mation to improve the hydrological model parameterization. Although Huisman et al.
(2009) showed that a Bayesian framework is useful to address this question, their
framework only allows an answer a posteriori. For long-term monitoring, it is more15

attractive to provide regular updates of hydrological states, parameters and their un-
certainty.

Typically, filtering techniques, such as the popular Kalman filter (Kalman, 1960;
Chen, 2003) are applied to update states whenever new measurements become avail-
able (e.g. Seppänen et al., 2001). The classical Kalman filter relies on linear behaviour20

in time, but additional filters have been developed that alleviate this problem, e.g. the
extended Kalman filter (see e.g. Kaipio and Somersalo, 2004) or the ensemble Kalman
filter (Evensen, 1994). Lehikoinen et al. (2009) have applied the extended Kalman filter
to the problem of dynamical ERT inversion with explicit recognition of state uncertainty.
However, all Kalman-type filters rely on Gaussian error distributions in the prior distri-25

bution.
A related family of filters are the particle filters. These filters are based on a sequen-

tial Bayesian framework (Gordon, 1993; Doucet and de Freitas, 2001; Arulampalam
et al., 2002; Storvik, 2002; Chen, 2003; Cappe et al., 2007). They have been de-
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signed to cope with arbitrary prior distributions. The posterior probability distributions
are approximated by sampling at discrete supporting points carried by weighted par-
ticles. This method is highly attractive for continuous state monitoring and also has
potential for parameter estimation. A major advantage in a hydrogeophysical monitor-
ing application is that the filter provides updated posterior distributions of states and5

parameters immediately after each measurement. Particle filters have recently been
introduced into hydrology (see e.g. Moradkhani and Hsu, 2005; Weerts and El Serafy,
2006; Zhou et al., 2006; Hsu et al., 2009). Although filtering techniques are traditionally
used to update state variables, they have also been applied in conjunction with hydro-
logical models for parameter estimation (Kivman, 2003; Vrugt et al., 2005; Hendricks10

Franssen and Kinzelbach, 2008; Salamon and Feyen, 2009)
In this study, we apply particle filtering to the problem of estimating hydraulic and

petrophysical parameters from ERT measurements made during infiltration in the un-
saturated zone. The rest of this study is organized as follows. First, we introduce the
concept and implementation of the particle filter. Next, we apply the particle filter to15

estimate the water content distribution and the saturated hydraulic conductivity from
a simple synthetic data set consisting of ERT measurements made during infiltration
into a lysimeter. Finally, we apply the particle filter to estimate hydraulic and petrophys-
ical parameters from spatial time domain reflectometry (TDR) and ERT measurements
made during infiltration into a full-scale dike model.20

2 Methods

2.1 State models

We want to describe the state x of a system, in our case e.g. a vector containing
water content or pressure head for each element of a discretized representation of the
subsurface. We can apply Bayesian analysis at each time step T=1, . . ., t, t+1, . . . At25

time t, this analysis can estimate past states x
1, . . .,xt−1 (smoothing), the current state
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x
t (filtering) or the future state x

t+1 (forecasting). x can be seen as a random variable
in a stochastic model that translates the state in time:

xt+1 = f (xt, ξ, ut) + αt+1 (1)

where the operator f is the time propagation function that translates the state in time
from t to t+1 driven by some external forcing ut and modified by some static param-5

eters ξ. αt+1 is Gaussian noise term that adds a stochastic diffusion process to the
translation.

From a state x
t+1, we can deduce an observation y

t+1 from the observation process

yt+1 = g(xt+1, ξ) + βt+1 (2)

where g is an operator to determine the system response from state and parameters,10

and βt+1 again is a Gaussian term describing the measurement noise. The noise term
αt+1 and βt+1 are assumed to be independent random vectors.

2.2 Parameter estimation

The state-space has been formulated in the previous section, where we assumed the
parameters ξ to be static. However, in this study we want to focus on parameter es-15

timation rather than only filtering or forecasting of states. Therefore, we use a series
of parameters ξ

t, that shall converge to estimates of the true static parameters ξ for
t → ∞. We assume these ξ

t to be pseudo-static, meaning that they are not modified
by external forcing, but only perturbed by a small Gaussian noise process as

ξt+1 = ξt + γt+1 (3)20

where γt+1 is an independent Gaussian random vector. For simplification, we abbrevi-
ate the notation as z=(x, ξ), where z is also known as the augmented state variable.
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2.3 Sequential Bayesian filtering

Given the prior distribution of state and parameters p(z0:t+1), we can obtain the poste-
rior distribution from filtering through the Bayesian theorem

p(z0:t+1|y1:t+1) =
p(y1:t+1|z0:t) p(z0:t+1)

p(y1:t+1)
(4)

where p(y1:t+1|z0:t) is a likelihood function for observations given the previous states5

and p(y1:t+1) is the normalization factor.
We approximate this pdf by a discrete set of n=1. . .N particles zi by assigning

a weight ŵi to each particle i . Then, we can write:

p(z0:t+1|y1:t+1) =
N∑
i=1

ŵt+1
i δ(z0:t+1 − z0:t+1

i ) (5)

where δ() are Dirac delta functions. Initially, all particles are assigned the same weight10

ŵ0
i = 1/N.
Direct sampling from this posterior is generally very demanding or impossible, so we

rather sample from a known distribution q(z0:t+1|y1:t+1) called a proposal distribution.
This way, we can define find new weights wi as

wk+1
i =

p(z0:t+1|y1:t+1)

q(z0:t+1|y1:t+1)
. (6)15

The choice of a proposal distribution is a critical decision (Arulampalam et al., 2002;
Moradkhani and Hsu, 2005), and is conveniently taken to be equal to the prior distribu-
tion

q
(
z0:t+1
i |z0:t

i ,y1:t+1) = p
(
z0:t+1|z0:t

i

)
. (7)
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The last step towards a sequential formulation is the assumption that the proposal
distribution is chosen so that it factorizes in a recursive way:

q(z0:t+1) = q(z0:t |y0:t)q(zt+1|z0:t,yt+1) (8)

By combining Eqs. (7) and (8), we arrive at the simple form for weight updating

wt+1
i = wt

i p
(
yt+1|zt+1

i

)
. (9)5

Due to the Markovian formulation of the time propagation model in Eqs. (1) and (3)
and the observation model in Eq. (2), this is a valid formulation and can be used to
implement a particle filter.

2.4 Particle filter implementation

We implement a Sampling Importance Resampling (SIR) filter, which basically follows10

a three-step approach. The first step is the time propagation of state and parameters
which samples the evolution density p(zt+1|zt) and follows from the models in Eqs. (1)
and (3).

The second step is filtering, which assigns weights to the particles based on the
probability for an observation. The observation is deduced from Eq. (2), then the weight15

is updated according to Eq. (9). For the vector Y of measurement data (e.g. measured
transfer resistances) and the modeled observations y, we evaluate the weight wi as
the inverse of the distance |Y t

i −y
t
i |.

After assigning and normalizing the weights, resampling is used to prevent a concen-
tration of weights in only one or a few particles. To find out whether this is necessary,20

an effective particle number Ne is determined as

Ne =
(∑

i

w2
i

)−1

. (10)

If Ne is larger than a threshold value τ (e.g. τ=0.8), the particle set remains unchanged.
Otherwise, this is an indication that the particle set has become impoverished, as few
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particles contribute with considerable weight. To remedy this, a new set of particles is
determined using a resampling algorithm. Different resampling techniques have been
proposed (see e.g. Douc et al., 2005), we use a residual resampling technique (Liu and
Chen, 1998) that allocates

n′
i = bNwi c (11)5

copies of particle i in the new set and samples the remaining L=N−
∑

i n
′
i particles

from the multinomial distribution Mult(L; w̃1, . . ., w̃N ) with

w̃ i =
Nwi − n′

i

L
. (12)

The weight wi for all new particles is again set to wi=1/N.
For T→∞ and N→∞, the posterior is found so that the weighted average ξ repre-10

sents an appropriate parameter estimate:

ξ =
∑
i

wiξ i (13)

Figure 1 illustrates the particle filter method. We start with a particle cloud that has
been propagated to time t. In the observation step, the particles are weighted accord-
ing to how well they fit with the data. Then, they are redistributed according to their15

weights. A particle that has gained weight during observation may split up into two
or more new particles, and particles that had small weight after observation may be
removed from the cloud. Finally, the propagation carries the particle states to time t+1,
which in our case would mean a forward model run from time t to t+1. These steps
are repeated as long as new measurements become available.20

2.4.1 Time propagation

For each particle i , the function f in Eq. (1) is evaluated by a hydrological forward model
run from time t to t+1. The state xt

i enters as the initial water content or pressure head
at time t.
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The hydrological models used in this study are HYDRUS (e.g. Simunek et al., 2008)
for 2-D modelling domains and PARSWMS (Hardelauf et al., 2007) for 3-D modelling
domains. They solve the Richards equation for unsaturated water flow into the domain
using a linear Galerkin approach in a finite element scheme. We assume that the para-
metric model by van Genuchten (1980) can describe soil water retention and hydraulic5

conductivity as:

Seff =
θ − θr

θS − θr
= (1 + |αh|n)−m (14)

k(h) = kS
√
Seff

[
1 −

(
1 − S1/m

eff

)m]2
(15)

where h is matrix potential (m), θ is the volumetric water content (m3/m3), θr is the
residual water content for h→−∞, θS is the saturated volumetric water content, α is10

the inverse of the air-entry value (m−1), n is an empirical shape factor (–), m is a factor
that can be connected to n via m=1−1/n and kS is the hydraulic conductivity at θ=θS
(m/s).

2.4.2 Observations

To evaluate particle weights, the modelled observation y has to be determined. In this15

study, we concentrate on ERT as the geophysical observation method. To model the
transfer resistances that are measured during an ERT survey, we have to determine
the distribution of bulk resistivity ρb from the soil water content distribution. Therefore,
the petrophysical relationship by Archie (1942) is used:

ρb = ρwΦ
−mA

(
θ
Φ

)−nA
(16)20

where ρw is the pore water resistivity (Ωm), which is the inverse of the pore water con-
ductivity σw , Φ is the porosity of the soil (m3/m3), mA is the cementation exponent (–)

6396

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/6/6387/2009/hessd-6-6387-2009-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/6/6387/2009/hessd-6-6387-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
6, 6387–6424, 2009

Coupled
hydrogeophysical

parameter estimation

J. Rings et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

and nA is the saturation exponent (–). Ulrich and Slater (2004) determined saturation
exponents ranging from 1.0 to 2.7 for unconsolidated sands.

We use an ERT forward code by Ruecker et al. (2006) for 3-D modelling domains and
the CRMOD code (Kemna et al., 2000) for 2-D modelling domains. Both ERT forward
models were coupled to hydrological models following the approach and considerations5

presented in Huisman et al. (2009).

3 Numerical experiment

As a proof of concept, we use a synthetic data set of simulated lysimeter infiltration
monitored by cross-borehole ERT. The model domain was set up as a cube of 1 m
edge length filled with a homogeneous material (with θr=0.001, θS=0.27, kS=0.001510

m/s, α=4 and n=4.56). On each vertical face of the cube, two electrode arrays were
installed at one third and two thirds of the width, with electrodes positioned below the
surface from 0.1 m to 0.9 m every 0.1 m. Electrode arrays were created for all possible
combinations of injection dipoles in one borehole and potential dipoles in the borehole
immediately across the injection borehole at equal or greater depth. Model grids were15

created for the hydrological simulation with 1000 equally sized hexagonal cells that
were further subdivided into 6000 tetrahedral cells. The parameter mesh for the ERT
model was of equal size, but internally an irregular grid with tetrahedral cells was used
(see Ruecker et al., 2006).

Water was infiltrated from all surface nodes into an initially dry medium (pressure20

head h=−1 m). After t=500 s, the wetting front reached the bottom of the volume.
Artificial measurements were created every 100 s with the ERT forward model. For this
simulation, a coarser internal ERT forward grid was used as recommended by Kaipio
and Somersalo (2004). The measurements were perturbed with 3% Gaussian noise.
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3.1 Implementation of the particle filter

For this 3-D simulation, the hydrological model PARSWMS (Hardelauf et al., 2007)
was coupled to the ERT forward code by Ruecker et al. (2006). The state vector was
initialized uniformly for each particle with 1331 pressure head values (one for each grid
node) and a variable kS . The initial state and parameter distribution were sampled5

from uniform distributions for n=1000 particles. Distribution bounds and true values
can be found in Table 1. The particle filter has been realized in a wrapper software
code “Particle Filtering Inversion-Friendly Framework” (PFIFF) implemented in Python
that connects the coupled models with the propagation, observation and resampling
schemes.10

For time propagation from t to t+1, the hydrological model was run conditional to the
particle’s parameter kS . Then, α=γ=2% Gaussian noise were added to the augmented
state to simulate a stochastic diffusion process.

We assumed that the petrophysical relationship was known, and used it to transfer
soil water content to bulk resistivity for each cell. The resistivity distribution thus ob-15

tained was used in the filtering step to simulate an ERT measurement at time t+1.
Then, particle weights were assigned and normalized. Finally, the particles were re-
sampled (each time step, so that the resampling threshold was τ=1) and their weights
reset to 1/n.

3.2 Results20

Figure 2 shows the distribution of particle weights immediately before the first resam-
pling (t=100 s) and at the end of the simulation (t=500 s). The figure implicitly contains
the variability in the state estimate, as can be seen from different weights of particles
with similar conductivity. The initial distribution of the states was only ∆h=4 cm wide,
so it is evident that errors in the state have a large influence on the weight.25

While most particles have a low weight, some particles near the true value of
kS=0.0015 m/s have a markedly higher weight. At the final time step, t=500 s, the
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filtering and resampling have caused most particles to converge to the correct value.
The weighted average of kS is 0.00165 m/s, which is a slight overestimation.

The state variable is shown for a 1-D vertical profile taken in the middle of the model
domain for two time steps (Fig. 3). The initial distribution was sampled from an interval
that underestimated the pressure head (see Table 1) for all particles. While at time5

t=300 s, the particle states show an even greater variability than in the initial distribu-
tion, the true state (blue line) is no longer on the boundary of the distribution, but the
particles gather around it. This is true not only for the model parts near the surface,
where changes due to the infiltrating water front have influenced the particle states, but
also near the bottom, where the stochastic diffusion process that is added to the time10

propagation step combined with the resampling have influenced the particle states to
move into the right direction. In the final time step, at t=500 s, the mean state value of
all particles successfully retrieved the true state. Only in the lowest parts of the model
(where ERT sensitivity is very low), the variability in pressure head is much higher.

Finally, the results of the parameter estimation are shown as a comparison of the15

initial prior and posterior pdf of kS in the histograms in Fig. 4. The prior distribution
was randomly sampled from a uniform distribution, but the parameter estimation suc-
cessfully transformed the pdf into a posterior distribution approximating a Gaussian
distribution with a mean near the true value.

4 Full-scale dike model20

4.1 Site description and measurements

Measurements have been taken on a full-scale dike model (see Fig. 5) located at the
Federal Waterways Research Institute in Karlsruhe, Germany. It has a height of 3.6 m
and a length of 22.4 m. The dike model was built homogeneously of a well-graded,
uniform sand, which was covered by a thin soil layer overgrown by grass. Below the25

dike, there is a waterproof sealing that creates a hydrological no-flow boundary. The
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waterside can be flooded to just below the crest. At the foot of the landside slope, there
is a drain that removes excess water and ensures the stability of the model dike. More
details on the dike model can be found in Scheuermann et al. (2009) and Rings et al.
(2008).

The dike model is equipped with 12 vertically installed TDR cables. By applying a re-5

construction algorithm (Schlaeger, 2005), permittivity profiles can be obtained along
these cables. These can be converted to spatially resolved soil water content profiles
by applying a petrophysical relationship, in this case a site-specific calibration (see
Scheuermann et al., 2009).

In 2007, water content measurements were taken using TDR cables. During a simi-10

lar experiment in 2005, ERT measurements were made using a SYSCAL Junior instru-
ment (IRIS instruments) on a 8 m long line with 48 electrodes with a spatial spacing
of 0.16 m down the landside slope of the dike (see Fig. 5). Each ERT measurement
consisted of 348 discrete arrays in the Wenner-Schlumberger configuration with a fixed
spacing of 0.16 m between potential electrodes and a current electrodes spacing rang-15

ing between 0.48 m and 4.32 m. From these 348 arrays, only the 120 arrays with the
largest absolute change over time were selected for use in the particle filter to reduce
the computational burden.

A flooding was simulated, in which the water level was raised to 2.4 m (1.2 m below
the crest) within 48 h. Unfortunately, no TDR measurements were taken during the20

flooding experiment in 2005. On the other hand, fewer ERT measurements were taken
down the landside slope in 2007. As both experiments were performed under very
similar conditions (with the difference that the water level was kept at the highest level
for an additional 48 h in 2007 with a subsequent more rapid lowering of the water
level), we use ERT measurements taken at 12 different times over the course of 92 h25

from 2005 and TDR measurements taken at 14 different times over the course of 96 h
in 2007 for two runs of the particle filter. Figure 6 shows the evolution of the water level
and the measurement times for ERT and TDR.
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4.2 Particle filter implementation

We follow the model setup by Huisman et al. (2009), where a 2-D section coincid-
ing with the ERT transect is modelled using the hydrological code HYDRUS (Simunek
et al., 2008) coupled to the ERT forward code by Kemna et al. (2000). Different model
grids were used for the hydrological and ERT model. For the hydrological model, a dis-5

cretization with a total of 7603 elements was chosen with a denser distribution near the
soil surface to account for steeper gradients of pressure head at the soil-atmosphere
interface. In contrast, the ERT model grid needs only be refined near the electrode
positions. A discretization with 5924 elements was used so that there was at least
one node in between neighbouring electrodes. The domain was extended into the10

subsurface, as the hydrological no-flow boundary permits flow of electrical current. In
Huisman et al. (2009), the electrical conductivity assigned to this domain extension was
optimized as an additional parameter. In this study, we fixed the subsurface electrical
conductivity to this optimized value.

The particle filter approach needs considerable computational resources, but has15

the benefit that propagation and observation can be run independently for each parti-
cle. Therefore, the PFIFF code was implemented in a parallelized version which uses
a multi-threaded root process that distributes and starts model runs for different parti-
cles on other processors using MPI.

Two versions of the filter were run with different observation models. In the first20

version, the observation model simply compared modelled and measured soil water
content derived from spatial TDR. The second version used the coupled electrical for-
ward code to model ERT data at all times when field ERT measurements were taken;
then particles were weighted by the inverse of the difference between measured and
modelled apparent resistivity. The TDR run used n=3000 particles with 1% parameter25

noise, the ERT run used 4096 particles with 3.5% parameter noise to ensure sufficient
exploration of the parameter space. Initial parameter estimates were sampled from
uniform distributions (see Tables 2 and 3) by stratified sampling. The TDR filter run
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took about 12 h on four quadcore CPUs, the ERT run took 50 h on 6 quadcore CPUs.

4.3 Results

Tables 2 and 3 show the results for the hydraulic and petrophysical parameters es-
timated either from water content measurements (TDR) or electrical measurements
(ERT). For each estimation method, the weighted average (see Eq. 13), the median5

and the 90% confidence interval have been calculated from the posterior distribution.
Figures 7 and 8 show, for the six parameter estimates, the posterior distributions. For
each parameter, the development of the 98% and 50% confidence intervals, median
and weighted average are shown.

The saturated hydraulic conductivity kS has been constrained by both methods. ERT10

has estimated a slightly higher kS , but both values agree well with the laboratory mea-
surements. It is clearly visible that as soon as markable changes in water content occur
(after 24 h), the filter quickly constrains the parameter range.

The distributions of α and n in Fig. 7 have hardly been constrained. A strong correla-
tion between these parameters was observed in Huisman et al. (2009), which leads to15

a very slow convergence as many possible pairs of α and n provide acceptable param-
eters. This also becomes apparent in Fig. 9. Here, the distribution of particle weights is
shown as a function of the parameters n and α. The ridge of the weight landscape has
approximately the same height for a large range of parameter combinations, leading to
a slowly converging estimation. In the limited number of time steps of the filtering pro-20

cess, no convergence could be achieved, however, the median and weighted average
approach the laboratory values. The petrophysical parameters nA and σw have been
well constrained as shown in Fig. 8. The value of nA agrees very well with the estimate
of nA=1.16 by Rings et al. (2008).

A comparison of water content distributions using laboratory and ERT calibrated kS25

for the 2005 experiment at t=29 h is shown in Fig. 10. As the subsurface seen by ERT
is limited to a depth of about 1.5 m on the landside (see Rings et al., 2008), ERT starts
to detect changes in water content from t=20 h on. At t=29 h, the parameter kS as esti-
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mated by the coupled approach leads to a simulation with mostly established saturated
area (Fig. 10, top row, right). The lower kS as determined in the laboratory, however,
leads to a saturated area that would barely reach the region visible to ERT (Fig. 10, top
row, left). After t=29 h, a saturated area is established and the measurements seem
to carry few information to additionally constrain the posterior distributions. However,5

these time steps are important to allow the posterior distribution to converge through
additional resampling steps.

The RMS error of the modelled ERT response in the last time step is 311Ωm with
a variance of only 16Ωm. This is twice the RMSE as found by the MCMC optimization
in Huisman et al. (2009), which had 12 free parameters, but a significant reduction10

from the initial RMS of 1966Ωm with a variance of 989Ωm. From the small variance
of the RMSE in the final set of particles, it is concluded that the final posterior has
approximately converged to the distribution that reflects the uncertainty and information
content of the measurements.

To evaluate the influence of the number of particles, we repeated the ERT filter run15

with only 400 particles. While the constraints on the parameter distributions look similar
to those in Fig. 8 with only slightly wider bounds, the median and weighted averages
differ considerably between runs with 400 and 4096 particles. Figure 11 shows the
particle weight distributions in the kS parameter space at time t=78 h. The vertically
striped structure is the effect of resampling and the Gaussian noise on the parame-20

ters. For the 4096 parameters, the density of particles is high enough so that it can be
assumed that the particle distribution approximates the posterior distribution, although
the space is not systematically explored. For 400 particles, gaps in the parameter
space are visible. In this case, the filter run still worked for 400 particles because of
the low-dimensional parameter space. However, it is questionable whether our stan-25

dard implementation of the particle filters can be successfully used to explore higher
dimensional parameter. A possible remedy could be a larger Gaussian noise on the
parameters, e.g. expressed in terms of variance multiplied with a factor that is system-
atically reduced over time as suggested by e.g. Liu and West (2000). A combination of
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particle filters with optimization concepts borrowed from MCMC methods also seems
promising to improve convergence and parameter space exploration issues.

5 Conclusions

We have presented a sequential Bayesian framework for estimation of hydrologi-
cal states and parameters from hydrogeophysical measurements. This particle filter5

method approaches the pdfs of state and parameters by discrete sets of particles
which each carry state and parameters sampled from initial distributions. Through
time propagation and comparison to measurement data, the particles are assigned
weights according to how well they describe the data. Over time and with the help of
a resampling technique, the particles approach the true distributions. Furthermore, the10

filtering approach has the benefit of providing updated posterior distributions of states
and parameters whenever new measurement data become available.

For a synthetic data set simulating lysimeter infiltration monitored by cross-borehole
ERT, this method was shown to be able to retrieve the correct model states and pa-
rameters and provide a reasonable estimate of the remaining predictive uncertainty.15

However, it was also apparent that small errors in the state estimation can strongly
affect parameter estimation, which necessitates the use of an increased number of
particles.

For field data, the focus was on parameter estimation; therefore the states were not
varied. The coupled hydrogeophysical approach has been applied to ERT and TDR20

data collected during infiltration experiments on a full-scale dike model. This model
dike allows experiments with temporal changes in water content up to full saturation.
It was monitored by TDR cables in the dike body that measured soil water content,
and by ERT perpendicular to the crest on the land side of the dike. Two particle filter
runs were made. In the first run, water content measured with TDR was used as the25

observation model, while in the second run only ERT measurements were analyzed
using the coupled hydrogeophysical inversion approach. The first filter run estimated
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three hydrological parameters, while the second estimated kS and two petrophysical
parameters. The parameter ranges were successfully constrained for kS and the petro-
physical parameters. For all parameters, the weighted average of the parameter distri-
butions were in good agreement with values obtained in laboratory measurements and
previous studies5

The results of this study are encouraging and show that sequential Bayesian meth-
ods are an appropriate estimation technique for parameter estimation in hydrogeophys-
ical surveys. Even more, as updates of the posterior distributions become available with
new measurements, this can be used for on-line parameter estimation in a permanent
monitoring installation, e.g. for the continuous monitoring of dike water content. The10

filter can also be used to forecast future states and to optimize experimental design.
This may involve a spatial focussing in regions where change will probably occur or an
optimization of the timing of measurements in a permanently installed system.

Filtering techniques are mostly applied for state estimation, where the propaga-
tion model places strict constraints on the variability. For parameter estimation, no15

such constraints exist. The presented particle filter implementation does not include
a search strategy for the parameter space, but instead relies on stratified sampling of
the initial distribution and random perturbations after each time step. This necessitates
a large number of particles, which is computationally prohibitive for a larger number
of parameters. While the present technique provides a promising strategy for applica-20

tions that focus on state estimation with few unknown parameters on the side, it will
be worthwhile to include findings from state-of-the-art Monte Carlo methods that have
been developed for (non-sequential) parameter space exploration to improve particle
filtering for parameter estimation.
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ments on the dike model and A. Scheuermann and A. Bieberstein at the IBF, University of
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Table 1. Initial state and parameter value and range.

Parameter True value Initial range

Initial pressure head −0.5 m −0.54. . .−0.50 m
Saturated hydraulic conductivity kS 0.0015 m/s 0.0008. . .0.0042 m/s

6411

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/6/6387/2009/hessd-6-6387-2009-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/6/6387/2009/hessd-6-6387-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
6, 6387–6424, 2009

Coupled
hydrogeophysical

parameter estimation

J. Rings et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Table 2. Initial and posterior parameter values for the dike and calibration to TDR. Units are m/s
for kS and 1/m for α.

Parameter Lab value Initial range TDR: W. Av. 5% Median 95%

log(kS ) −3.68 −5. . .−3 −3.39 −3.61 −3.39 −3.21
α 4 3. . . 10 5.4 3.2 5.1 8.8
n 2.2 1.4. . . 4.0 2.1 1.5 1.9 3.1
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Table 3. Initial and posterior parameter values for the dike and calibration to ERT. Units are m/s
for kS and (Ωm)−1 for σw .

Parameter Lab value Initial range ERT: W. Av. 5% Median 95%

log(kS ) −3.68 −5. . .−3 −3.21 −3.47 −3.19 −2.99
nA 1.164 1. . . 2 1.13 1.06 1.13 1.22
σW – 0.01. . . 0.05 0.046 0.042 0.046 0.050
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Fig. 1. Illustration of the filtering steps of observation and propagation and the resampling
scheme.
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Fig. 2. Weights of particles before resampling steps at t=100 s and t=500 s.
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Fig. 3. Vertical 1-D pressure head profiles. The blue line marks the true value, while each red
line corresponds to one particle’s state. Green lines mark the state pdf median and the 5% to
95% confidence interval.
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Fig. 4. Prior and posterior probability distribution of kS for the numerical case.
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Fig. 5. Full-scale dike model at the Federal Waterways Research Institute in Karlsruhe, Ger-
many.
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Fig. 6. Heights of the water level in the 2005 and 2007 flooding experiment. Points mark the
times where measurements were taken, either with ERT in 2005 or TDR in 2007.
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Fig. 7. Posterior probability obtained from TDR measurements. Distributions of kS , α and n
are shown with the 98% percentile marked by light color, the 50% percentile marked in blue,
the blue line marking the median and the green dots marking the weighted averages at each
time step.
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Fig. 8. Posterior probabilities obtained from ERT measurements. Distributions of kS , nA and
σw are shown with the 98% percentile marked by light color, the 50% percentile marked in blue,
the blue line marking the median and the green dots marking the weighted averages at each
time step.
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Fig. 9. Particle weights, n and α for all particles in the filter run calibrated to SWC measure-
ments at the final time step.
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Fig. 10. Water content distribution in the dike model at time t=29 h for the 2005 experiment
using either the laboratory measured kS or the (final) kS estimated from ERT.
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Fig. 11. Particle weights and kS for ERT filter runs with 400 and 4096 particles at tme t=78 h.

6424

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/6/6387/2009/hessd-6-6387-2009-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/6/6387/2009/hessd-6-6387-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/

